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Abstract: In many applications data classification may be hindered by the existence of multiple contexts that produce an input
sample. To alleviate the problems associated with multiple contexts, context-based classification is a process that uses different
classifiers depending on a measure of the context. Context-based classifiers offer the promise of increasing performance by
allowing classifiers to become experts at classifying input samples of certain types, rather than trying to force single classifiers to
perform well on all possible inputs. This study introduces a novel mixture of experts (ME) model, the mixture of hidden Markov
model experts, for context-based classification of samples that are variable length sequences; and derives the update equations
for a single probabilistic model that to learn the experts and a gate that connects the experts. The model has a similar high-level
structure to the ME model but has the novelty that the gates and the experts are HMMs and the input data are sequences.
Experimental results are presented on three datasets including one for landmine detection. Detailed analysis of the model is

provided; which, over multiple runs and cross-validation experiments, show superior results over the compared algorithms.

1 Introduction

Time-series or sequential data often show multiple patterns owing
to the different contexts that they appear in. For example,
electricity usage has both seasonal and socio-economic patterns.
Therefore, a software that detects fraud should consider electricity
usage within these contexts. Similarly, in electrocardiogram
classification, certain ethnic groups and athletes show slower
resting heartbeats. Therefore, one has to consider healthy versus
unhealthy heartbeats in these contexts. Unfortunately, unlike these
examples, contexts are generally hard to define, they are often
interlaced, and do not have sharp boundaries. Moreover, context
information might be inherent in the data, but not be known to the
data modeller. In such cases, we define a context as a group of
similar signatures.

A more involved example to demonstrate this problem is
landmine detection. The estimated 60,000,000—100,000,000 active
buried landmines around world [1] have various sizes and types.
They are roughly categorised into four groups according to their
metallic content and intended targets as high metal anti-tank
(HMAT), high metal anti-personnel (HMAP), low metal anti-tank
(LMAT), and low metal anti-personnel (LMAP). However, these
groups mostly overlap, and the signals collected from these mines
can be significantly affected by changes in temperature, humidity,
and soil conditions.

One way to deal with multiple contexts is the mixture of experts
(ME) model. In the ME architecture, a set of expert networks and a
gating network cooperate with each other to solve a non-linear

Expert 1

Fig. 1 Classification using the ME model. Red diamonds and blue dots
represent data coming from two classes. The gate divides the region in two
with a soft decision, then the experts learn the simple surfaces to separate
the two classes. Taken from [2]
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supervised learning problem by dividing the input space into a set
of regions as shown in Fig. 1. In the traditional ME model, the gate
and experts are simple surfaces; however, ME models have been
found useful because of their modular and flexible structure, as
described by the survey paper by Yuksel ef al. [2] which
summarises the ME and the numerous advances with it taking
place in the late 2000s.

In this study, we are introducing a novel model, mixture of
hidden Markov model experts (MHMME), that can both
decompose time-series data into multiple contexts and learn expert
classifiers for each context. In this model, a gate of hidden Markov
models (HMMs) defines the contexts and cooperates with a set of
hidden Markov model experts that provide multi-class
classification. The MHMME model is inspired from the ME model
[3, 4], and extends it to time-series (and sequential) data for
classification. Therefore, MHMME carries the advantages of the
ME model and also brings advantages that set it apart from the
other models. The main advantages can be summarised as follows:

* MHMME model provides a divide and conquer approach, is
probabilistic, and has soft boundaries — all of which support
context learning. In addition, unlike the traditional mixture
models where the mixture coefficient is a scalar, in MHMME
the mixture coefficient (i.e. the gate) depends on the input and
helps define the contexts that are unknown to the data modeller.

» The learning of the contexts and the classifiers is accomplished
simultaneously, in one model. This papers gives the derivations
to arrive at this single probabilistic model.

* During training, there is no hard clustering of data, which means
that the sequences can freely move between contexts and
classifiers during training.

* MHMME considers the temporal connections in time-series
data, and is suitable for high-dimensional sequential data of
varying lengths due to the use of the HMMs. In addition, HMMs
at the gates and the experts can be of different topologies
(number of states, observation symbols etc.).

* MHMME is suitable for multi-class classification.

» Experiments on synthetic and real data show that MHMME can
perform better than ME and HMMs, and can do well in
comparison to state-of-the-art models.



To this end, in the sections that follow, we first compare MHMME
to the existing models in the literature and explain the need to
develop MHMME. Then, in Section 3 we give a brief introduction
to the ME model. In Section 4, we derive the update equations of
the MHMME model and explain its implementation. We
demonstrate the intuition behind the MHMME model on a
synthetic example in Section 5. We show our results for landmine
detection from metal detector data in Section 6, and also on an
object recognition dataset consisting of varying length sequences in
Section 7. We compare MHMME to the ME-only and HMM-only
models, to its individual components, i.e. the gate HMMs and the
expert HMMs, and also compare our results to those in the
literature.

2 Comparison of MHMME to the ME literature:
why the need arises

In the ME literature, a number of models [5-11] were described
that extend the ME architecture to time-series data. These models,
however, are only applicable to regression, and they use a one-step-
ahead or multi-step-ahead prediction in which the last couple of
values of the time-series data are used as features in a neural
network. Such models cannot handle data of varying length and the
use of multilayer network-type approaches prevent them from
completely describing the temporal properties of a time-series
dataset. In contrast to these models, our study is on classification,
and is focused on varying length sequences. Note that with varying
or uneven lengths, we mean that the observation sequences do not
all have the same length.

On the other hand, there are a number of studies [12—15] that
combine HMMs and MEs. However, despite the similar names,
these models are quite different than our model. To be specific, in
[12], each state of the HMM is a ME (whereas in our paper, each
HMM is a part of an expert). Similarly, in [13] an HMM model
was modified to have two separate branches, one for slow speech
and one for fast speech. In the study by Zhao et al [15],
hierarchically organised relatively small neural networks were
trained to perform probability density estimation. Therefore, Zhao's
model does not use HMMs, instead, it uses mixture models to
mimick an HMM. Finally in [14], SVM classifiers were trained for
each region in the brain, and they were connected with a hidden
conditional random field (HCRF). One can think of the HCRFs as
the gate, and the SVMs as the experts, but temporal sequences
were not of interest.

The model proposed herein differs from these previously
published models and has distinct properties that are worthwhile to
investigate. It provides a stand-alone model to find the contexts and
classifiers for high dimensional data sequences with uneven
lengths, and considers their temporal properties in training. Unlike
the traditional mixture models where the mixture coefficient is a
scalar, in the MHMME model, the mixture coefficient (i.e. the
gate) depends on the input. Therefore, the experts and the gate need
to be trained simultaneously, and it is derived in this study.

3 Mixture of experts

In this section, we provide a brief overview of the traditional ME
algorithm. For a K-class classification problem, let £:1...K be the
class index. Let / be the number of experts as shown in the figure
with i:1.../ denoting the expert index. Each expert is a K-class
classifier. Then, these classifier experts are connected by a gate,
which essentially gives a weight to each expert. Finally, the desired
output y™ is of length K and y™ = 1 if the input x™ belongs to
class k and 0 otherwise.

Considering all the experts, there are K parameter sets
{{w,}_ }¥_, to be learned. Using these weights, the expert outputs
per class are found by softmax functions:

Loy exp(wy[x™, 1])
“ R exp(wi[x®, 1))

(M

which are the means of the experts’ multinomial probability
models, P(y™|i, x™), which is in short referred to as P,(y):

P(y) = l:[fffi- @)

The gate is the scalar defined by the softmax function:

Bi(x,v)

9(xV) = 5w 3)
T

where f,(x, v) are functions of the gate parameter v, and are linear
given by B.(x,v) =v;[x,1] in the original ME. The softmax
function is a smooth version of the winner-takes-all model.

In ME, it is assumed that the experts are mutually exclusive
[10]. Hence, using Bayes’ rule, given an input vector x and a
desired (target) output vector y, the total probability of observing
the target vector y can be written in terms of the probabilities of
belonging to the region specified by one of the / experts as:

I

PO X" = ¥ g P11 x") (4)
i=1

where g, = P(i|x™), i = 1, ..., I, is the probability of selecting the
ith expert depending on the input, and P(y®™|i,x™) is the
probability of the input belonging to the region specified by the ith
expert.

The ME training algorithm introduces hidden variables and
maximises the log of complete data likelihood obtained from the
probability in (4) to learn the parameters of the experts and the
gate. Interested readers are referred to [2] for details of obtaining
the update equations.

Once all the weights are learned, to make a single prediction,
the outputs are computed per class:

Am) _ A (n)
=Y 9"y
i

and for practical purposes, the input x™ is classified as belonging
to the class k that gives the maximum y%°, k:1...K.

4 Mixture of hidden Markov model experts

The MHMME architecture introduced in this study is illustrated in
Fig. 2 where the gate has / HMM models. Each branch of the gate
is connected to an expert, and an expert is a set of K HMMs, one
for each class. The gate partitions set of all time-series data that can
serve as inputs to the HMMs, and defines the contexts where the
individual expert opinions are trustworthy. Experts discriminate
data in these partitions based on class labels. The MHMME
architecture in Fig. 2 is similar to the ME architecture, which gives
the divide-and-conquer property to MHMME. The important part
then, is to derive the probabilistic update equations to train the gate
and the experts simultaneously.

For the rest of the paper, the notation used for HMMs is as
follows:

e J/=number of states.

* M= number of symbols in the codebook.

» T=length of observation sequence.

o V={vy,..., vy} the discrete set of observation symbols.

e 0=0,0;...07 denotes an observation sequence, where O, € V'
is the observation at time ¢.

* 0=qq...q7 1s a fixed state sequence, where g, is the state at
time 7.

e §={5,Sy,..., Sy} are the individual states.

* [=number of experts, and i:1.../ is the expert index.

¢ K=number of classes, and k:1...K is the class index.

* lix=HMM model for the kth class at the ith expert.

IET Comput. Vis.
© The Institution of Engineering and Technology 2016



Output
Gate é
HMM T 9s e
HMM i 9i
HMM 1

ol

Experti
HMM K —7ix
Expert 1 HMM ik — J'} n Expert|
1.
HMM 1K HMMil — ~ HMM IK
HMM Ik ol Ya HMM Ik
HMM 11 HMMI11
OT oT

Fig. 2 MHMME architecture with I experts for K classes. A gate partitions
the set of all time-series data that can serve as inputs to the HMMs. Experts
learn to discriminate the classes in these partitions

* y;=ith HMM model at the gate.

* The initial state distribution = = {m,}"_,, where 7= P(q; =S,) is
the probability of being in state » at time = 1.

* The state transition probability A = {{a,}/_ }/_,, where a,;=
P(qr+1=Sjlq,= S,) is the probability of being in state j at time 7+
1 given that we are in state  at time .

* The observation symbol probability distribution
B = {{b/.(m)}]w: Q.. where b(m)=P(v, at tlqg,=j) is the
probability of observing the symbol v,, given that we are in state
J.

We denote the HMM models at the gate with W = {3p}i_,, the
HMM models at the experts with A, = {4,}_,, and finally, we
denote the set of all the gate and expert parameters as @ = {\¥, A}.

Let the data be denoted by D = {0,Y} where 0 = {0™}"_,
represents the input sequences, and ¥ = {y™}"_, represents the
class coded true outputs of training data such that

¥y ="y .yl and

1 if 0™ belongs to class k;

Y =
, 0 otherwise.

The probability function for the gate and experts is the following:

N )
P(Y]0,0) = H Z gi(o(n)' ) Pi(y(n)lAi) (5)

n=1i=1

where g;(O", ¥)) is the gate's probabilistic estimate that the
sequence O belongs to the space defined by expert i. In other
words, g0, W;)=P(i|j0O™, ¥)), the probability of selecting the
ith expert given the sequence O®™. The second term in (5),
P,(y™,A), is the probability that the ith expert has generated y™

given the sequence O™, In the rest of this paper, we will denote
2{(0", ¥)) with g, and P,(y™ | A) with P,(y™).

The gate's probabilistic estimate is obtained by a softmax
function that considers the confidences of all the HMM models at

the gate, given as:

w_ _ expfO]p)

( 6
O e O™ ) ©)

where {O™|y,) is the Viterbi log-likelihood of observation O™ for
an HMM model y;.

Similar to the gate, the HMMs at the experts compute the
Viterbi log-likelihood

F(O™12,) = 10g Py (0”10, 4, @
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where the Viterbi likelihood Pyyp(O™)|0, 4 is
o r-1 T )
PHMM(O(H) | Q' /L'k) = ﬂt(ylgk) H a((;r’:72+1 H bgik)(ot)' (8)
t=1 t=1

These log-likelihoods are converted to probabilities by a softmax
function, and the output of expert i for class k is ¥%°, computed as:

O €Xp f(O(") |)'ik)
ik = QK ™ . 9
Xr-1exp (0™ 4,)

which is also the mean of its multinomial probability model. More
specifically, for a given sequence O™, expert i produces a
prediction with probability P,(y™) following a multinomial
distribution with mean y,, such that:

Po™) =[]vx- (10)
k

Finally, the output of the MHMME architecture, {y,}f_,, is a
weighted sum of the expert outputs:

v = ng")f’f:)- (11)
L

Typically, the observation sequence O is assigned to the kth class
that gives the maximum {y,}5_, as:

k' = argmax S/ (12)

It is worth noting the relationship between the mixture model (11)
and its probabilistic counterpart in (5). The parameters of the
MHMME model are learned using the probabilistic model in (5),
which will be explained in the next section.

4.1 Training of the MHMME model

The parameters optimising the distribution P(Y | 0, ©) in (5) can be
found by introducing latent variables Z and by maximising the
complete distribution P(Y,Z|0,0) with the expectation-
maximisation (EM) algorithm. These latent variables are
Z = {{z"}_.}_, such that

1 if 0™ € R;

0 otherwise.

7™ =

i

where R; is the region specified by expert i. Hence, the complete
data distribution becomes:

P(v,210,0) = []] (g”P.y™)" (13)

Hence now, in the E step, we find the expectations of the hidden
variables [4, 16] as:

) (n)
. 9."P.(y™)
n =S o™ (9
jI ] J

In the M step, we maximise the expected complete data likelihood
E,(logP(Y,Z| 0, 0)) from the objective function:

Q(6,0") = E,(I(Y,Z] 0,0))

N 1 N 1
= Y Y hPlogg”+ ¥, Y hlogP ().
n=1i=1 i=1

n=1i=

(15)

In the M step, ;s are kept fixed, hence the two terms on the right-
hand side of the equation are decoupled and can be computed

3



independently for the experts and the gate. We refer to these
objective functions as Q, for the gate and as Q, for the experts,
given as:

N 1
Q,= 21 _Zlhf")logyﬁ") (16)
n=1i=
N I
Q.= Y Y hlogP,(y™). (17)
n=1i=1

Note that these equations follow from the ME model and are given
here for completeness. Unfortunately, max, @’ and max, Q°
cannot be solved analytically because of the softmax function.
Therefore, iterative and gradient based algorithms have been used
in the past for the learning of the ME model [4, 16, 17]. Similarly,
we use the gradient methods to find the parameters of the HMMs
in the MHMME model.

In the M step, we search for the HMM parameters that
maximise these objective functions:

A"V = argmax Q, (18)

ik

.(/)EP +D arglznax Qg (19)

where p denotes the iteration number. Explicitly, the HMM
parameters to be estimated in the experts are ;= {4 B} We
will denote each element of the 4 matrix as aijk) withr=1...W,j=
1...W, and each element of the B matrix as bf,i’;) withm=1..M,j=
1...W. To ensure that the estimated parameters satisfy the
constraints a,; >0, ZZVZ 1a,;,=1,b,;>0,and i ; =1, we map

these parameters using log, and map them back w1th softmax
functions:

a,; - g =loga,, (20)
_ expa,
@)= ST et Q1)
b, — I; =logb,,, (22)
mj
b
b, = — b 23)

S expb,,

Such mappings are common in gradient based training models such
s [18, 19]. The HMM parameters that maximise the objective
functions are found by gradient ascent updates as:

3 o+ 0QA®D)
(k)(p +1) = (k)(p) te€ aa(l”f)(p) ’ 24
rj
~(ik) 7 W) 9Q.(A (p))
b,;(p+1) =b,,; (p) +€ ~(zk>( ) (25)
mj
where
0.0 & & f (0", A,) 9asy’
X po(yo — ey 2O M) 0an o o
(k) Z mz_: ( (’)a(k) aaijk)
00.(0) _ ﬁ: Z O (y — A<"))wab(m (27)
T T T i

mj

and the gradients are

af (0™, &) n n
a—(lk)k (lk) Z S(QE)_m qi-:l_]) (28)
rj T/ t=1
b ,
ot =B =B, (29)
mj
af (0™, 4,) 1 n n .
@ = 3® Y 6 =m 0,09 =)). (0
mj mj t=1

Similarly, the updates for the gate are:

2Q,(¥ ul af (0™, y,) dal)
Q~((1) ) Z Z (h(n) (n)) f( (L)I:b) ?(l)’ (31)
n=1lm=1 / aar}
90,(¥) _ w_ an9f(0", ) 9bg)
~(t) Z Z (h( ) f )) op® N(t) : (32)
n=1m=1 mj ab

mj

Upon observing the gradients at the gate in (31) and remembering
that 0 <4;<1 and 0 <g; <1, we see that the gate g; would try to get
closer to /; (which is held constant at the M step). Therefore, the
maximum O, is reached if both g; and &; are 1, and the others (g;,
;, i#j) are zero. This happens when a data sequence can be
completely described by a single expert. Otherwise, the experts
share a pattern and pay a price for it as described by the cross-
entropy term in (16). Upon observing (26), we see that the HMM
parameters at the experts are adjusted such that the expert output
¥, approximates the true class label y;.
Learning is accomplished by computing the expectations 4; in
the E step and learning the HMMs in the M step. The complete
algorithm is given in Algorithm 1 (see Fig. 3).

5 Synthetic example

lustrative synthetic data were created to examine the MHMME
behaviour. In the sections below, we describe the data generation,
MHMME initialisation and the results of MHMME.

5.1 Data generation

A training set of 80 sequences from two classes was generated as
follows. The interval [0, 1] was divided into 10 sub-intervals. For
each sub-interval i=1, ..., 10, a sample x; was drawn from a
uniform distribution on that sub-interval. Then,

* 20 sequences were generated from class 1 using
y® = x, + N(0,0%) where n=1, ..., 20.

* 20 sequences were generated from class 1 using
y® = —x, + 1+ N(0,0°) where n=21, ..., 40.

* 20 sequences were generated from class 2 using
y® = x% + N(0,0%) where n=1, ..., 20.

* 20 sequences were generated from class 2 using
y® = —x2 + 1+ N(0,0°) where n=21, ..., 40.

In all cases o was set to 0.08. These sequences are displayed in
Fig. 4. We refer to them as x, — x, x and — x2.

Using the same parameters and protocol, a test set was
generated containing 40 samples per class. The y values were used
as the data; the x values were ignored. Therefore, the features were
1D sequences as if the data were projected onto the y-axis. The
values were discretised to five symbols, linearly spaced between
[0, 1].

5.2 Initialisation of the MHMME model

To discriminate the sequences, an MHMME model was trained
with two experts. All HMMs in the MHMME model had three
states and five symbols. To initialise the gate, the data were
clustered by k-means [20] into two, and a Baum—Welch (BW)
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Algorithm 4.1:

o Initialize the number of experts /
o Initialize the gating HMM parameters {y; }il=1
o Initialize the expert HMM parameters {{4; k}i[:l },{(:1
while |Q(®, ©?=D) — 0@, 8P)|/0(®, P)) > 1e — 5
comment: E STEP
do Compute
Viterbi log likelihoods f(O|4;r) from Eq. 7
Expert outputs )7,.(;:) from Eq. 9
Expert probabilities P;(y) from Eq. 10
Gating outputs gi(") from Eq. 6
Posterior probabilities hf") from Eq. 14
end
comment: M STEP

comment: Expert Updates
while Q. in Eq. 17 is increasing (i.e. AQ, > le —5)
for each expert

do ~ ~
Map a,j — a,j and by,j — byj (Egs. 20 & 22)
Update A from Eq. 24
Update B from Eq. 25

Map da,; — ayj and byj — by (Eqs. 21 & 23)

do

comment: Gate Updates
while Q. in Eq. 16 is increasing (i.e. AQg > le —5)

Map a,j = ayj and byj — by (Eqs. 20 & 22)
Update A using the gradients in Eq. 31

go Update B using the gradients in Eq. 32
Map da,; — ayj and by,j — by (Eqs. 21 & 23)
Compute Q(®, ©P)) from Eq. 15

e Compute 915") from Eq. 11

e Make a decision k* = arg;:lax {&,E”)},{(zl :

return (k*)

Fig. 3 Algorithm 1: MHMME training (K, X, Y)

Fig. 4 Synthetic data for two classes. The sequences that belong to the
first class are displayed in red (*), and the sequences that belong to the
second class are displayed in black (+). The first class has 20 sequences

generated from the function y =x + N(0, 62) and 20 sequences generated
fromy= —x+1+N(0, (72) overlayed on each other. Similarly, the second
class has 20 sequences generated from the function y =x? + N(0, ¢°) and

20 sequences generated fromy = — X+ 1 + N(0, o2 ). These y-values were
quantised to five symbols and the discretised values were used as the data.
Each data sequence has length 10

HMM [21] was fit to each of these clusters. To initialise the
experts, the sequences from each class that were highly weighted
by the gate were modelled with BW-HMM.

With this initialisation, the first gate HMM immediately gave

more weight to the y=x and y=x2 sequences, and the second gave
more weight to the y= —x+1and y= —x2+ | sequences.
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5.3 Results of MHMME

Upon the MHMME training, the first expert learned HMM models
that discriminate among y=x and y=x2, and the second expert
learned HMM models that discriminate among y= —x+1and y=

—x2+ 1. The patterns learned by each HMM are shown in Fig. 5
where the bigger circles denote the contexts defined by the gate,
and the smaller circles denote the results of classification by the
experts. The A4 and B matrices of the HMM models at the gate and
at the experts are displayed in Figs. 6 and 7 as Hinton diagrams in
which the area occupied by a white square is proportional to the
magnitude of the matrix entry. In Fig. 6, observe that the first
HMM at the gate learns sequences with positive slope, and the
second learns sequences with negative slope. Recall that the five
symbols were linearly spaced between [0, 1]. So the top row in the
B matrices denotes the highest symbol, and the bottom row the
lowest. These sequences are discriminated with expert HMM
models as shown in Fig. 7. The B matrices suggest that each HMM
is learning the sequence shapes with stress on their discriminative
properties.

The initial classification rates were 65% on the training data
and 60% on the test data. After MHMME learning, the
classification rates reached 98% on the training data, and 94% on
the test data. The improvement in the objective function with
respect to the outer iterations is displayed in Fig. 8. With one outer
iteration, we mean a complete E-M step where all the parameters in
the experts and the gate are updated. Note that at each update of an
HMM, there are several inner iterations that are run until
convergence, as given in Algorithm 1 (Fig. 3).

The red dashed curve is the objective function of the gate, Qg in
(16), and the green dotted curve is the objective function of the
experts, O, in (17). Qg and Q, are summed to get the total objective
function Q in (15), which is displayed as the solid blue curve. The
patterns in the iterations point to an interesting observation. In the
first iteration, Oy, the objective function of the gate stays the same,
and the experts update relatively quickly. Then Q, attains a smaller
incline while Q, shows a significant increase for the next two
iterations. Finally, when the gate updates become almost constant,
the experts keep adjusting themselves until both the experts and the
gate reach a steady solution. With these adjustments at each
iteration, the experts strive to best represent the sequences that are
highly weighted by their corresponding gate.

It is noted that with different initialisations or numbers of
experts, the gate could partition the space differently as there are
many solutions to this problem. In that case, one expert/gate
combination finds meaningful patterns for data that received low
confidences from the other experts. With this interpretation, one
can compare it to AdaBoost [22]. However, there is at least one
major difference: the experts and gate are learned and updated
simultaneously, whereas the experts are learned successively in the
original AdaBoost algorithm and there is no going back when an
expert is learned.

6 Experimental results with landmine data

A dataset of measurements collected with a wide-band
electromagnetic induction (WEMI) sensor over regions of earth
containing buried landmines and non-mine (clutter) objects is used
for this application. The data were collected in two outdoor
environments at which landmines and clutter objects were buried in
the centres of cells in rectangular grids. The cells were 1.5 m x 1.5
m. Some cells, called blanks, had nothing buried in them. Table 1
tabulates the number of objects in both sites.

The sensors are described in detail in [23, 24]. The WEMI
sensors detect metal and produce characteristic signatures of many
metallic objects. They collect complex responses in 21 frequencies
between 330 and 90,030 Hz equally spaced in log space; in the
configuration used to collect the data described here, data were
collected at 1 cm intervals in the direction of travel (called the
down-track direction) using three sensors aligned perpendicular to
the direction of travel. A WEMI sensor response can be modelled
as
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Fig. 5 MHMME results on synthetic data. The first HMM in the gate

learns a model for y =x and y = x? and defines the context to be the positive
slope. The second HMM in the gate learns a model for y= —xandy= —

x2 and defines the context to be the negative slope. Then, the first expert
learns to discriminate between y =x and y:xz, and the second expert

learns HMM models to distinguish between y= —x and y= —x?. The
HMM parameters that lead to this result are plotted in Fig. 6 for the gate
and in Fig. 7 for the experts

a b o] d

Fig. 6 HMM models learned at the gate for the synthetic data. The
transition matrices (A) and the observation matrices (B) are displayed as
Hinton diagrams, in which the area occupied by a white square is
proportional to the magnitude of the matrix entry. The first HMM model at
the gate learns the sequences with a positive slope (x and x2 ')

(a) As described by the 4] matrix and, (b) the B| matrix. The second HMM model at

the gate learns the sequences with a negative slope (—x and —x2), (¢) as described by
the Ap matrix and, (d) the B) matrix

e f e} h

Fig. 7 HMM models learned at the experts for synthetic data. A subscript
ij means ith expert jth class. The transition matrices (A) and the
observation matrices (B) are displayed as Hinton diagrams

(a—d) There are only slight differences in the A4 matrices, but the figures (e)—(h) show
what the B matrices have learned to model and discriminate the sequences of Fig. 4

S(w) = All(w) + iQ(w)]. (33)

where w is the frequency, 4 is the magnitude, /(w) is the real (in-
phase) response and Q(w) is the imaginary (quadrature) response.
This shape can be represented by the Argand diagram, that is, the
plot of I(w) with respect to Q(w) [24]. The Argand diagram shape
can characterise the type and distribution of metal in a target [23].
Mines of the same type can show similar Argand curves that are

scaled versions of each other depending on depth. Thus, it is
possible to discriminate between some landmines and clutter [25—
28]. However, the extent of the ability to discriminate is not known
at this time.

Example Argand diagrams are shown in Fig. 9. Small mines
with small amounts of metal are generally buried close to the
ground surface and generate a faint WEMI response that can be
confused with surface clutter. Large mines with small amounts of
metal are often found at deeper depths and their WEMI response
can also be faint. Furthermore, a small mine that is mostly metal
can be buried deeply but appear similar to a small mine with a
small amount of metal buried at a shallow depth. As a result, the
features of these subclasses are interlaced and it is difficult to
appoint a model as an expert to identify a particular subclass of
mines [25, 29, 30]. The MHMME model offers promise for better
discrimination between mines and clutter by identifying contexts.

The data measured by the middle sensor were used for analysis
[26]. During training, pairs of in-phase and quadrature data {/(w),
Ow)} were discretised to 50 cluster centres using fuzzy c-means
(FCM) clustering [31]. An example is displayed in Fig. 10. The
complex response collected at 21 frequencies are discretised using
this clustering resulting in an observation sequence of length 21.
These observation sequences are the sequences that the HMM
processes.

6.1 Initialisation

The MHMME architecture was set to have eight experts based on
our prior knowledge of Table 1. This also corresponds to eight
HMMs at the gate to be able to produce a weight for each expert;
and two HMMs at each expert. All the HMMs were set to have
three states, determined experimentally.

The gate HMMs were initialised using clustering HMMs (CI-
HMM), which is the abbreviation for Smyth's sequence clustering
approach [32]. A brief description of CI-HMM is as follows: an
HMM model is fit to each training sequence, resulting in N HMM
models for N sequences. All N training sequences are tested on all
N HMM models, and sequences with similar likelihoods are
clustered together into G groups using hierarchical clustering. Then
a new HMM is learned for each cluster using the BW algorithm
[21]. To initialise the gate, four HMMs were learned from class 1
(mines) and 4 HMMs were learned from class 2 (non-mines) using
CI-HMM. To initialise the experts, the sequences from each class
that were highly weighted by the gate were modelled with BW-
HMM.

6.2 Landmine detection results

A sample output of the MHMME classifier is given in Fig. 9. Each
subfigure shows the sequences that received the highest
probabilities by the gate HMMs. For example, the first HMM at the
gate, as shown in Fig. 9a, gave the highest probabilities to mainly
LMAT objects. Similarly, LMAT and HMAP objects of a particular
shape share the second context. This is an interesting and a very
intuitive result. LMAT mines are bigger in size, but they have
lower metallic content and they are buried in deeper levels of the
ground. HMAP mines on the other hand are much smaller than the
AT mines but are buried closer to the ground levels. Therefore,
even if these are completely different objects, their metallic
response may look the same. As a result, they fall into the same
context, and instead of learning one model for HMAP mines and
another for LMAT mines; it is more meaningful to automatically
identify the similar ones and consider them under a single context.
On the other hand, the fourth gate HMM in Fig. 94 is also very
interesting. Here, the gate HMM-4 has identified some LMAP
mines and a blank (B) cell. There is nothing buried inside the blank
cell; however, due to several environmental effects, the signals
from the LMAP mine and the blank cell, which are completely
different, may look alike in their Argand diagrams. Therefore, they
fall into the same context. Now that the gate has identified which
sequences are similar; it is the experts’ duty to discriminate
between these sequences and come to a mine/non-mine decision.
The average classification results obtained from 20 experiments
of 10-fold cross-validation are reported in Table 2. In running these
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Fig. 8 MHMME objective function. The objective functions for the gate
(Og) and the experts (Q.) versus the number of iterations. The total
objective function Q displayed as the solid line is the sum of Qg and Qe

the (i) CI-HMM model used to initialise the MHMME, (ii) ME-
only and HMM-only models including a discriminative HMM, and
(iii) gate and experts when they are used individually as classifiers.
Each of the classifiers that are compared are explained below.

e CI-HMM: Sequences from each class are clustered into four
using [32], and an HMM is learned for each cluster, resulting in
eight HMMs. A test sequence is assigned to the class whose
HMM yields the highest log-likelihood.

e Gate: The gate HMMs of the full MHMME model are used as
classifiers to test their individual performance. The first four
HMMs are assumed to represent the first class, and the next four
HMMs are assumed to represent the second class. A test
sequence is assigned to the class corresponding to the HMM that
yields the highest log-likelihood.

o Experts: Each expert HMM is used as a classifier.

e PCA + ME: The real and the imaginary parts of the data are
combined to form a sequence of length 42. Then PCA is applied
and the dimensionality is reduced to 10. These feature vectors
are used to train a standard ME model.

e MCE-HMM: Minimum classification error HMM is a
discriminative learning method that minimises the total

N ] — —
2 £ £l 3
o = = =
[¥) 04 [ i) 04 D [ ) 4 oe 08 [ [ 28
I(w), LMAT I{w), LMAT I(w), EMAT I(w), LMAF
N ==
z 3 z 3
= E =
7 o4 o8 8 04 08 h o 04 [ T 04 [ i) 1
I(w), LMAT I(w), EMAP I(w), EMAP I(w), LMAP
P 3 5 3
a = =
0z 04 [ 28 i ! 04 28 0 o o4 [ [T s [ [ 14 1
I(w), LMAT I(w), DMAP I(w), EMAF I(w), B
a b c d
y
i z B :
o o o o J
ot
02 [ [ s 1 [ 08 25 ¢ o2 [T) 28 o8 3 o i T3 8 1
Iiw), LMC I(w), B I(w), B I(w), WMC
3 3 3 :
o, o o L
oz [ 0e 0F 2z 04 M s ¢ (5] [T ) o8 s ™) i 1] W
I(w), EMC I(w), LMC I{w, B Iiw), wMc
3 3 7 3
a a o =
0 oz [T) [ M) [7) 08 ° [ [ 28 T s 7 T ] 0
Iiw), LMC Iv, B Iiw), HWMC I(w), WMC
e f g h

Fig. 9 Contexts defined by the gate HMMs. Each sequence is a normalised Argand diagram which is the plot of the real EMI response I(w) vs. the imaginary
EMI response Q(w). On the x-axis, the type of the mine or nonmine object is given; such as LMAP, LMAT, HMAT, HMAP and so on. Each column shows the
top three Argand sequences among all the training sequences that are assigned the highest weight by the gate HMM

(a) For examplethe first gate HMM learns the LMAT objects of a specific shape to be the first context,(d) LMAP objects and a blank cell fall under the same context because of their
similar shapes. It will now be the job of the experts to identify the intricate details to distinguish between the mine and non-mine sequences

experiments, our goal is to fundamentally understand what is the
experts’ success rate, the gate's success rate, what is the
contribution of the initialisation on the overall success, and to
understand if ME or HMM is the main identifying component and
what would be the results if we used a discriminative classifier
such as the MCE-HMM. In particular, we compare MHMME to

Table 1 Number of landmine and clutter objects

Notation Meaning Number
HMAP high metal anti-personnel mine 30
LMAP low metal anti-personnel mine 66
HMAT high metal anti-tank mine 11
LMAT low metal anti-tank mine 49
HMC high metal clutter 89
MMC medium metal clutter 28
LMC low metal clutter 28
INMC or B non-metallic clutter or blank cell 142

IET Comput. Vis.
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misclassification error. It was introduced by Juang et al. [18]
and used in [33, 34] for landmine detection. The parameters of
MCE-HMM as they appear in [34] were set as follows: 7 =1, y
=8,0 =0,e =0.1.

Classification rates are given in Table 2 in decreasing order. The
mean and standard deviation of classification rates are computed
from 20 independent training/testing runs, each of which employed
a 10-fold cross-validation. When compared the other algorithms,
MHMME performs far better than the HMM-only and the ME-only
methods such as the MCE-HMM and the PCA+ME.

In addition, our goal was to understand what is gained by the
full MHMME model beyond what can be achieved by the
individual components. Upon observing the classification rates of
the experts and the gate as if they were used as classifiers;
MHMME significantly increases the classification rates beyond
those obtained by the components. It is also interesting to compare
the gate and the CI-HMM,; although the gate was initialised with
CI-HMM, it did not necessarily increase the classification rates
after training, rather it worked towards the goal of increasing the

7
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Fig. 10 Cluster centres of the landmine data. In-phase and quadrature
components were used for quantisation

overall probability of the gate and experts combined in an
MHMME. These results show that it is not the experts or the gate
alone, but rather it is their combination in the MHMME model that
gives good classification rates.

To sum up, MHMME found contexts that are similar to what a
human expert would find; such as one context for HMAP mines,
one context for LMAP mines and so on. However, it also showed
that some of the non-mines and landmines are very similar; and
that an empty cell can also look very much like an LMAP. In such
interesting cases, the MHMME model first grouped together these
signals that look alike (i.e. learn the context), and the experts
learned to classify these data into mine/non-mine decisions.

7 Experimental results on the CP dataset

In this section, we evaluate the behaviour of MHMME on the
chicken pieces (CP) dataset [35]. We describe the data in Section
7.1 and the MHMME Iinitialisation in Section 7.2. In Section 7.3
we analyse the MHMME classifier and the characteristics of the
trained experts and the gate, the likelihood distributions, and
reliability and reject rates. We then analyse the internal structure of
MHMME in Section 7.4 and evaluate the performance of each
component of MHMME and how the components compare to
using the ME or HMM models had they been combined in the
MHMME way.

7.1 Data set

The CP dataset contains 446 binary images of five classes of pieces
of chicken. There are 117 images in the Wing, 96 images in the
Drumstick, 76 images in the Back, 61 images in the Thigh and
Back, and 96 images in the Breast classes. This dataset is publicly
available at http://algoval.essex.ac.uk/data/sequence/chicken/. The
features are fully described by Bicego et al. [36, 37]. Briefly, the
binary image contours were approximated by line segments. The
features were recorded as the angles between consecutive
segments. Therefore, a data sample is a sequence of features from
one image. The lengths of the sequences in the CP dataset are
varying between the minimum length of 18 and the maximum
length of 104. The mean length of the sequences is 54 and the

Table 2 Classification rates on the landmine data

Model Mean Std. Deviation
MHMME 0.80 0.05
MCE-HMM 0.75 0.05
PCA+ME 0.73 0.05

gate 0.71 0.05
CI-HMM 0.70 0.02
experts 0.61 0.02
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median length is 51. The CP sequences exhibit significant variation
within each class, making it a good test case for our model.

On another note, it should be stated the MHMME model was
developed based on a need for landmine detection; and that there
might be better models to discriminate the CP dataset such as the
ones based on SVMs (also reported in our own paper in [27]).
However, our goal in this section is to demonstrate the inner
workings of the MHMME on a dataset everyone can freely access
and quickly understand; and to show in detail what each and every
component is learning, and how that is contributing to the overall
analysis.

7.2 Initialisation

The MHMME was initialised with 10 experts with three states and
20 symbols per HMM. The number of states was selected from
published results [38, 39] and was confirmed experimentally. The
number of symbols was selected by minimising misclassification
rates for a basic HMM classifier. The symbols were found by
clustering the data with FCM [31]. The number of experts was
selected based on achieving the highest classification rates with the
Cl-HMM classifier, which was described in Section 6.1. The Cl-
HMMs achieved the best classification results for G =2 clusters for
each class of the CP data. Therefore, we took G=2 clusters, and
initialised the 10 gate HMMs with the CI-HMMs.

Sequences that produced the highest log-likelihoods from the
10 gate HMMs were used to train expert HMMs using the BW
algorithm. Thus, contexts are initially designed to be associated
with classes, however, during MHMME training, contexts get
updated to increase the overall probability that is defined by both
gate and experts, and need not represent a specific class. Within
cach context, it is the expert's duty to learn models that
discriminate the five classes.

7.3 Analysis of MHMME classifier

Two-fold cross-validation was used for MHMME training for
comparison to previous work [38—41]. The contexts defined by the
gates are represented in Fig. 11. Each column shows two sequences
that represent a learned context. The sequences have fairly variable
shape and are not class specific; they may be shared between
classes. This observation is illustrated in Table 3 where each
sequence has been assigned to the gate HMM that produced the
highest log-likelihood. The first column shows that most sequences
from the class 1 are represented by the first and the second gate
HMMs, but other sequences from class 1 were better represented
by the 4-7th gate HMMs. From another perspective, the fifth gate
HMM (fifth row) represents at least one sequence from every class.
The same applies to the fourth gate HMM (fourth row). Therefore,
the gates are not sufficient for high performance classification, and
the experts are needed. Note that all assignments are actually
probabilistic, and there is no such hard clustering of data during
training. The hard assignments have been provided for evaluation.
Classification rates from combining expert and gating models
are shown Table 4. Note that the misclassification rate is
significantly reduced. These class assignments are probabilistic and
the outputs can be thresholded. A more thorough look given by
reliability and reject rates as shown in Fig. 12 can measure this
characteristic. They are defined as follows: let ¢4 be a threshold on
classifier confidence. Let Ny, denote the number of samples, x, with
confidence C(x) such that C(x)>th. Let Cy, denote the number of
correctly classified samples with C(x)>th. The reliability R of the
classifier at threshold th is defined as R(th) = Cy,/Ny,, and the reject
rate J(th)=(N—Ny)/N where N is the total number of samples.
Fig. 12 shows that with no rejection, about 18% of the samples are
misclassified. However, if we reject 40% of the samples, this
corresponds to the threshold value of 0.6, and then only about 4%
from the remaining 60% are misclassified. Thus, about 60% of the
patterns are easily classified. Moreover, some patterns are
ambiguous hence completely accurate classification is unrealistic.
The HMM log-likelihoods at the gate and the experts for the
training data of a given class are shown in Fig. 13. The x-axis
shows the difference of the log-likelihoods between two experts.
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The y-axis shows the log-likelihoods obtained from the gate
HMMs. In this plot, every two gate HMMs were assumed to
specialise in one class (HMMs 1&2 describe class 1, HMMs 3&4
describe class 2 and so on), which is consistent with the
initialisation process. The gate HMMs define a context, and the
expert HMMs specialise within these contexts. For each class, at
least one gate associated with each class produces a ‘high’ log-

Table 3 Gate results

likelihood for almost all samples (where high here means above
about —3). As a result, in most classes, the experts and the gate
complement each other resulting in the butterfly effect: if a gate/
expert pair performs poorly in a region of the space, the other gate/
expert pair performs better and dominates the classification
decision. The effect is more pronounced in classes 2 and 5. For
example, in the case of class 2, if gate 3 is high, then expert 3 is
high and if gate 4 is high, then expert 4 is high. To be clear, the
gate HMMs are not designed to be classifiers; they are designed to
model contexts. On the other hand, it is interesting to note that the
gates do contain classification information.

7.4 Analysis of internal structure of MHMME

In this section, we compare MHMME to the components of
MHMME as well as to the computing models. Similar to the
previous section, our goal is to understand what is gained by the
full MHMME model beyond what can be achieved by the
individual components. In particular, we compare MHMME to the
(i) CI-HMM model used to initialise the MHMME, (ii) ME-only
and HMM-only models, and (iii) gate and experts when they are
used individually as classifiers. The methods for using components
as classifiers are briefly described below.

e PCA+ME: To use the standard ME, the vectors in each sequence
are concatenated to form a high-dimensional vector. Since
sequences have variable lengths, they are resampled to length
110. Principal component analysis (PCA) is used to reduce

Class

1 2 3 4 5

Gate 1 10 0 0 0 0
2 29 1 1 3 0

3 0 17 0 1 3

4 9 9 1 4 6

5 1 5 21 1 1"

6 1 3 24 0 7

7 9 4 0 19 1

8 0 0 0 4 3

9 0 0 0 0 4

10 0 0 2 0 3

Table 4 Confusion matrix
Class

Decision 56 3 2 10 4
0 26 1 0 2

3 4 46 0 2

0 0 0 15 0
0 6 0 7 40
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Fig. 13 Log-likelihoods of sequences of a given class at the gate and the experts. The x-axis shows the difference of the log-likelihoods between two experts.

The y-axis shows the log-likelihoods of the gate HMMs

dimensionality to 10. These feature vectors are used to train a
standard ME model [4, 16].

* PCA+VMEC: The same as above except variational ME is used
for classification (VMEC) [42] with y hyperparameters set to 1.

In the next four classifiers, a test sequence is assigned to the class
corresponding to the HMM that yields the highest log-likelihood.

* HMM: BW is used to train one HMM per class.

e CI-HMM: This method was described in Section 6.1. Two
HMMs are constructed for each class.

* Gate: The gate HMMs of the full MHMME model are used as
classifiers to test their individual performance. Every two gate
HMMs are assumed to describe a class (HMMs 1&2 describe
the first class, HMMs 3&4 describe the second class and so on).

» Experts: Each expert HMM is used as a classifier.

* HMM + MAP [38]: One HMM is learned per class. Then
classification of an unlabelled sequence is performed by
maximum-a-posteriori (MAP) approach.

Classification rates are given in Table 5. The mean and standard
deviation of 20 classification rates calculated from 20 independent
training runs, each of which employed a two-fold cross-validation.
Note that there are five classes hence randomly assigning samples
to classes should yield an average classification rate of 20%.
Among these classifiers, PCA+ME and PCA+VMEC are the two
ME-only methods, whereas HMM and CI-HMM are the two
HMM-only methods. When compared to these, MHMME performs
far better than the HMM-only and the ME-only methods.

Table 5 Classification rates on the CP dataset for two-fold
cross-validation training on 20 runs

Model Mean Std. deviation
PCA + ME [16] 0.43 0.01

PCA + VMEC [42] 0.44 0.01
HMM 0.41 0.05
CI-HMM [32] 0.61 0.03
HMM + MAP [38] 0.57 0.008
Gate 0.59 0.08
Experts 0.53 0.04
MHMME 0.73 0.02
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The results are consistent with those of the landmine data. First,
MHMME significantly increases the classification rates beyond
those obtained by the components. Second, when the Gate and Cl-
HMM rates are compared, it can be observed that the gate worked
towards the goal of increasing the overall probability of the gate
and experts combined in an MHMME. These results again show
that it is not the experts or the gate alone, but rather it is their
combination in the MHMME model that gives good classification
rates.

These results indicate that MHMME is useful for datasets that
have multiple contexts that are interlaced between classes. It allows
the simultaneous probabilistic learning of the sub-regions from
multi-class data and the discriminative classification of the data in
these sub-regions. The soft partitioning is provided by the gate
whereas the discriminative classification is performed at the
experts. One direct consequence of soft partitioning of the data
should be emphasised: HMMs at each expert are affected by all the
data points, but the effect of each data point is weighted by the
gate. Therefore, even if a sequence does not have a high weight as
determined by the gate, it still affects the experts’ decision but with
a lower weight. In this way, HMMs are less prone to over-fitting
than other models that use hard clusters of the data while
specialising in a context.

8 Conclusion

In this study, we addressed the problems encountered when
designing classifiers for classes that contain multiple subclasses
whose characteristics are dependent on the context. It is sometimes
the case that when the appropriate context is chosen, classification
is relatively easy, whereas in the absence of contextual information,
classification may be difficult. Therefore, in this study,
simultaneous learning of context and classification has been
addressed for sequential data, and the MHMME has been
developed. The updates of HMM parameters in an ME framework
have been derived, and the benefits of ME have been extended to
time-series data. The MHMME model allows for the simultaneous
probabilistic learning of the sub-regions from multi-class
sequential data and the discrimination of the classes in these sub-
regions. The output is a mixture of the HMM decisions, but the
mixture coefficient is not fixed once it is learned, rather it depends
on the input data. The MHMME model has been applied to a
synthetic dataset, to the CP data as well as the landmines data. It
has been shown that the combination of ME and HMM models in
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the MHMME model increases the performance of any single
classifier. When compared with its individual components, i.e. the
HMMs at the experts and at the gate, MHMME combination
increases the classification rates. In addition, it has been shown that
MHMME can do well in comparison with competing models.

In this work, the number of experts and the number of states
were selected experimentally such that the initialisation starts at a
higher rate for the landmine data. For the CP dataset, it was
selected based on the literature. In the future, it would be
worthwhile to investigate the sampling methods for training as
opposed to EM, the optimum number of experts and the optimum
number of states. In addition, it would be interesting to see whether
or not another level of hierarchy would increase the classification
rates for data that have a deeper level of contexts. Moreover, the
MHMME model herein uses discrete HMMSs, but it would be
worthwhile to investigate the update equations using continuous
HMMs.
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